Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biofouling ; 40(2): 165-176, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38425095

RESUMO

Dual-species biofilms formed by Candida albicans and Staphylococcus aureus have high virulence and drug resistance. In this context, biosurfactants produced by Pseudomonas aeruginosa have been widely studied, of which a new derivative (RLmix_Arg) stands out for possible application in formulations. The objective of this study was to evaluate the antibiofilm activity of RLmix_Arg, both alone and incorporated in a gel prepared with Pluronic F-127, against dual-species biofilms of fluconazole-resistant C. albicans (FRCA) and methicillin-resistant S. aureus (MRSA) in impregnated catheters. Broth microdilution tests, MTT reduction assays of mature biofilms, impregnation of RLmix_Arg and its gel in peripheral venous catheters, durability tests and scanning electron microscopy (SEM) were performed. RLmix_Arg showed antimicrobial activity against Candida spp. and S. aureus, by reducing the cell viability of mixed biofilms of FRCA and MRSA, and preventing their formation in a peripheral venous catheter. The incorporation of this biosurfactant in the Pluronic F-127 gel considerably enhanced its antibiofilm activity. Thus, RLmix_Arg has potential application in gels for impregnation in peripheral venous catheters, helping to prevent development of dual-species biofilms of FRCA and MRSA.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Fluconazol/farmacologia , Candida albicans , Staphylococcus aureus , Resistência a Meticilina , Biofilmes , Poloxâmero/farmacologia , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Cateteres , Antibacterianos/farmacologia
2.
J Med Microbiol ; 73(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385528

RESUMO

Introduction. Candida albicans and Staphylococcus aureus are recognized for their development of resistance and biofilm formation. New therapeutic alternatives are necessary in this context.Hypothesis. Etomidate shows potential application in catheters against mixed biofilms of fluconazole-resistant C. albicans and methicillin-resistant S. aureus (MRSA).Aim. The present study aimed to evaluate the activity of etomidate against mixed biofilms of fluconazole-resistant C. albicans and MRSA.Methodology. The action of etomidate against mature biofilms was verified through the evaluation of biomass and cell viability, and its ability to prevent biofilm formation in peripheral venous catheters was determined based on counts of colony forming units (c.f.u.) and confirmed by morphological analysis through scanning electron microscopy (SEM).Results. Etomidate generated a reduction (P<0.05) in biomass and cell viability starting from a concentration of 250 µg ml-1. In addition, it showed significant ability to prevent the formation of mixed biofilms in a peripheral venous catheter, as shown by a reduction in c.f.u. SEM revealed that treatment with etomidate caused substantial damage to the fungal cells.Conclusion. The results showed the potential of etomidate against polymicrobial biofilms of fluconazole-resistant C. albicans and MRSA.


Assuntos
Etomidato , Staphylococcus aureus Resistente à Meticilina , Fluconazol/farmacologia , Candida albicans , Antifúngicos/farmacologia , Etomidato/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
3.
J Med Microbiol ; 72(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37801011

RESUMO

Species of the genus Candida, characterized as commensals of the human microbiota, are opportunistic pathogens capable of generating various types of infections with high associated costs. Considering the limited pharmacological arsenal and the emergence of antifungal-resistant strains, the repositioning of drugs is a strategy used to search for new therapeutic alternatives, in which minocycline and doxycycline have been evaluated as potential candidates. Thus, the objective was to evaluate the in vitro antifungal activity of two tetracyclines, minocycline and doxycycline, and their possible mechanism of action against fluconazole-resistant strains of Candida spp. The sensitivity test for antimicrobials was performed using the broth microdilution technique, and the pharmacological interaction with fluconazole was also analysed using the checkerboard method. To analyse the possible mechanisms of action, flow cytometry assays were performed. The minimum inhibitory concentration obtained was 4-427 µg ml-1 for minocycline and 128-512 µg ml-1 for doxycycline, and mostly indifferent and additive interactions with fluconazole were observed. These tetracyclines were found to promote cellular alterations that generated death by apoptosis, with concentration-dependent reactive oxygen species production and reduced cell viability. Therefore, minocycline and doxycycline present themselves as promising study molecules against Candida spp.


Assuntos
Antifúngicos , Fluconazol , Humanos , Fluconazol/farmacologia , Antifúngicos/farmacologia , Candida , Minociclina/farmacologia , Doxiciclina/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica
4.
J Med Microbiol ; 72(9)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37707372

RESUMO

Introduction. Antibiotic resistance is a major threat to public health, particularly with methicillin-resistant Staphylococcus aureus (MRSA) being a leading cause of antimicrobial resistance. To combat this problem, drug repurposing offers a promising solution for the discovery of new antibacterial agents.Hypothesis. Menadione exhibits antibacterial activity against methicillin-sensitive and methicillin-resistant S. aureus strains, both alone and in combination with oxacillin. Its primary mechanism of action involves inducing oxidative stress.Methodology. Sensitivity assays were performed using broth microdilution. The interaction between menadione, oxacillin, and antioxidants was assessed using checkerboard technique. Mechanism of action was evaluated using flow cytometry, fluorescence microscopy, and in silico analysis.Aim. The aim of this study was to evaluate the in vitro antibacterial potential of menadione against planktonic and biofilm forms of methicillin-sensitive and resistant S. aureus strains. It also examined its role as a modulator of oxacillin activity and investigated the mechanism of action involved in its activity.Results. Menadione showed antibacterial activity against planktonic cells at concentrations ranging from 2 to 32 µg ml-1, with bacteriostatic action. When combined with oxacillin, it exhibited an additive and synergistic effect against the tested strains. Menadione also demonstrated antibiofilm activity at subinhibitory concentrations and effectively combated biofilms with reduced sensitivity to oxacillin alone. Its mechanism of action involves the production of reactive oxygen species (ROS) and DNA damage. It also showed interactions with important targets, such as DNA gyrase and dehydroesqualene synthase. The presence of ascorbic acid reversed its effects.Conclusion. Menadione exhibited antibacterial and antibiofilm activity against MRSA strains, suggesting its potential as an adjunct in the treatment of S. aureus infections. The main mechanism of action involves the production of ROS, which subsequently leads to DNA damage. Additionally, the activity of menadione can be complemented by its interaction with important virulence targets.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Oxacilina , Oxacilina/farmacologia , Vitamina K 3/farmacologia , Meticilina , Staphylococcus aureus , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Biofilmes
5.
J Med Microbiol ; 72(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36762524

RESUMO

Candida spp. infections are a serious health problem, especially in patients with risk factors. The acquisition of resistance, often associated with biofilm production, makes treatment more difficult due to the reduced effectiveness of available antifungals. Drug repurposing is a good alternative for the treatment of infections by Candida spp. biofilms. The present study evaluated the in vitro antibiofilm activity of sertraline in reducing the cell viability of forming and matured biofilms, in addition to elucidating whether effective concentrations are safe. Sertraline reduced biofilm cell viability by more than 80 % for all Candida species tested, acting at low and safe concentrations, both on mature biofilm and in preventing its formation, even the one with highest virulence. Its preventive mechanism seemed to be related to binding with ALS3. These data indicate that sertraline is a promising drug with anticandidal biofilm potential in safe doses. However, further studies are needed to elucidate the antibiofilm mechanism and possible application of pharmaceutical forms.


Assuntos
Candida , Candidíase , Humanos , Sertralina/farmacologia , Sertralina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candidíase/tratamento farmacológico , Biofilmes , Testes de Sensibilidade Microbiana , Candida albicans
6.
J. Health Biol. Sci. (Online) ; 10(1): 1-12, 01/jan./2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1382369

RESUMO

Objective: this systematic review aims to compile literature data on the antimicrobial action of Selective Serotonin Reuptake Inhibitors (SSRI). Methods: To this end, the articles in this review were searched in the PubMed database between the years 2010 to 2020, using terms found in MESH as descriptors. The PRISMA flow diagram was used to analyze the process flow of the research. Later, inclusion and exclusion criteria and eligibility for data extraction and statistical analysis were applied. Results: Thus, of 252 articles found, 13 were used for this systematic review. The period in which there were more publications was in 2016-2017. All articles demonstrated the antimicrobial activity of ISRS, such as sertraline, fluoxetine, and paroxetine, in addition to their synergistic activity with some antifungals and antibacterial. Conclusion: With this, it could be concluded that the repositioning of non-antibiotic drugs that have antimicrobial activity is a promising alternative for the scientific community and, in the future, in clinical practice


Objetivo: compilar dados da literatura sobre a ação antimicrobiana dos Inibidores Seletivos de Recaptação de Serotonina (ISRS). Métodos: os artigos desta revisão foram pesquisados na base de dados PubMed, entre os anos de 2010 a 2020, utilizando, como descritores, termos encontrados no MESH. O fluxograma PRISMA foi utilizado para analisar o fluxo do processo da pesquisa. Posteriormente, foram aplicados os critérios de inclusão e exclusão e de elegibilidade para extração de dados e análise estatística. Resultados: dos 252 artigos encontrados, 13 foram utilizados para esta revisão sistemática. O período em que houve mais publicações foi em 2016-2017. Todos os artigos demonstraram a atividade antimicrobiana do ISRS, como sertralina, fluoxetina e paroxetina, além de sua atividade sinérgica com alguns antifúngicos e antibacterianos. Conclusão: o reposicionamento de medicamentos não antibióticos que possuam atividade antimicrobiana é uma alternativa promissora para a comunidade científica e, futuramente, na prática clínica.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina , Antibacterianos , Antifúngicos , Bactérias , Serotonina , Fluoxetina , Inibidores Seletivos de Recaptação de Serotonina , Paroxetina , Sertralina , PubMed , Fungos
7.
J. Health Biol. Sci. (Online) ; 10(1): 1-10, 01/jan./2022. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1378456

RESUMO

Objective: This study aimed to evaluate the interactions of di- and tri-terpenes from Stillingia loranthacea with the enzyme NSP16-NSP10 of SARS-CoV-2, important for viral replication. Methods: The molecular docking technique was used to evaluate this interaction. Results: The analysis showed that the evaluated compounds obtained RMSD values of 0.888 to 1.944 Å and free energy of -6.1 to -9.4 kcal/mol, with the observation of hydrogen bonds, salt bridges, and pi-sulfur, pi-alkyl, and hydrophobic interactions. Conclusion: Thus, the results obtained show the potential of the compounds analyzed against the selected target. Since computer simulations are only an initial step in projects for the development of antiviral drugs, this study provides important data for future research.


Objetivo: avaliar as interações de di- e tri-terpenos de Stillingia loranthacea com a enzima NSP16-NSP10 de SARS-CoV-2, importante para a replicação viral. Métodos: A técnica de docking molecular foi utilizada para avaliar essa interação. Resultados: A análise mostrou que os compostos avaliados obtiveram valores de RMSD de 0,888 a 1,944 Å e energia livre de -6,1 a -9,4 kcal/mol, observando-se ligações de hidrogênio, pontes salinas e pi-enxofre, pi-alquil, e interações hidrofóbicas. Conclusão: Assim, os resultados obtidos mostram o potencial dos compostos analisados frente ao alvo selecionado. Como as simulações computacionais são apenas um passo inicial nos projetos de desenvolvimento de medicamentos antivirais, este estudo fornece dados importantes para pesquisas futuras.


Assuntos
SARS-CoV-2 , Antivirais , Terpenos , Replicação Viral , Enzimas , Simulação de Acoplamento Molecular
8.
J. Health Biol. Sci. (Online) ; 10(1): 1-12, 01/jan./2022. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1378476

RESUMO

Objective: Analyze lysosomotropic agents and their action on COVID-19 targets using the molecular docking technique. Methods: Molecular docking analyses of these lysosomotropic agents were performed, namely of fluoxetine, imipramine, chloroquine, verapamil, tamoxifen, amitriptyline, and chlorpromazine against important targets for the pathogenesis of SARS-CoV-2. Results: The results revealed that the inhibitors bind to distinct regions of Mpro COVID-19, with variations in RMSD values from 1.325 to 1.962 Å and binding free energy of -5.2 to -4.3 kcal/mol. Furthermore, the analysis of the second target showed that all inhibitors bonded at the same site as the enzyme, and the interaction resulted in an RMSD variation of 0.735 to 1.562 Å and binding free energy ranging from -6.0 to -8.7 kcal/mol. Conclusion: Therefore, this study allows proposing the use of these lysosomotropic compounds. However, these computer simulations are just an initial step toward conceiving new projects for the development of antiviral molecules.


Objetivo: aAnalisar agentes lisossomotrópicos e sua ação em alvos de COVID-19 usando a técnica de docking molecular. Métodos: Foram realizadas análises de docagem molecular destes agentes lisossomotrópicos, nomeadamente de fluoxetina, imipramina, cloroquina, verapamil, tamoxifeno, amitriptilina e clorpromazina contra alvos importantes para a patogenia do SARS-CoV-2. Resultados: Os resultados revelaram que os inibidores se ligam a regiões distintas do Mpro COVID-19, com variações nos valores de RMSD de 1.325 a 1.962 Å e energia livre de ligação de -5,2 a -4,3 kcal/mol. Além disso, a análise do segundo alvo mostrou que todos os inibidores se ligaram no mesmo sítio da enzima, e a interação resultante em uma variação de RMSD de 0,735 a 1.562 Å e energia livre de ligação variando de -6,0 a -8,7 kcal/mol. Conclusão: Portanto, este estudo permite propor o uso desses compostos lisossomotrópicos. No entanto, essas simulações em computador são apenas um passo inicial para a concepção de novos projetos para o desenvolvimento de moléculas antivirais.


Assuntos
SARS-CoV-2 , COVID-19 , Antivirais , Cloroquina , Programas de Rastreamento , Fluoxetina , Amitriptilina , Imipramina
9.
J. Health Biol. Sci. (Online) ; 10(1): 1-6, 01/jan./2022. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1370924

RESUMO

Objective: to evaluate the molecular interaction of silibinin with the targets ALS3 and SAP5. Methodology: Molecular docking protocols were conducted to analyze the binding interaction of silibinin with ALS3 and SAP5. Results: Eleven interactions of ALS3 with silibinin and four with fluconazole were found, while six interactions were observed of SAP5 with silibinin and four with fluconazole. Conclusion: Molecular docking between silibinin and ALS3 identified important interactions, but no significant interactions were observed with SAP5, even though silibinin can exhibit affinity and interactions with other SAP5 sites.


Objetivo: Avaliar a interação molecular da silibinina com os alvos ALS3 e SAP5. Metodologia: Protocolos de docking molecular foram conduzidos para analisar a interação de ligação da silibinina com ALS3 e SAP5. Resultados: Foram encontradas onze interações de ALS3 com silibinina e quatro com fluconazol, enquanto seis interações foram observadas de SAP5 com silibinina e quatro com fluconazol. Conclusão: Docking molecular entre silibinina e ALS3 identificou interações importantes, mas não foram observadas interações significativas com SAP5, embora a silibinina possa apresentar afinidade e interações com outros sítios SAP5.


Assuntos
Candida albicans , Silimarina , Proteínas , Infecções Fúngicas Invasivas
10.
Can J Microbiol ; 67(12): 885-893, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34314621

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main human pathogens and is responsible for many diseases, ranging from skin infections to more invasive infections. These infections are dangerous and expensive to treat because these strains are resistant to a large number of conventional antibiotics. Thus, the antibacterial effect of ketamine against MRSA strains, its mechanism of action, and in silico interaction with sortase A were evaluated. The antibacterial effect of ketamine was assessed using the broth microdilution method. Subsequently, the mechanism of action was assessed using flow cytometry and molecular docking assays with sortase A. Our results showed that ketamine has a significant antibacterial activity against MRSA strains in the range of 2.49-3.73 mM. Their mechanism of action involves alterations in membrane integrity and DNA damage, reducing cell viability, and inducing apoptosis. In addition, ketamine had an affinity for S. aureus sortase A. These results indicate that this compound can be used as an alternative to develop new strategies to combat infections caused by MRSA.


Assuntos
Ketamina , Staphylococcus aureus Resistente à Meticilina , Aminoaciltransferases , Antibacterianos/farmacologia , Proteínas de Bactérias , Cisteína Endopeptidases , Humanos , Ketamina/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Staphylococcus aureus
11.
J Med Microbiol ; 69(10): 1221-1227, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32894212

RESUMO

This study evaluated the effect of etomidate against biofilms of Candida spp. and analysed through molecular docking the interaction of this drug with ALS3, an important protein for fungal adhesion. Three fluconazole-resistant fungi were used: Candida albicans, Candida parapsilosis and Candida tropicalis. Growing biofilms were exposed to etomidate at 31.25-500 µg ml-1. Then, an ALS3 adhesive protein from C. albicans was analysed through a molecular mapping technique, composed of a sequence of algorithms to perform molecular mapping simulation based on classic force field theory. Etomidate showed antifungal activity against growing biofilms of resistant C. albicans, C. parapsilosis and C. tropicalis at all concentrations used in the study. The etomidate coupling analysis revealed three interactions with the residues of interest compared to hepta-threonine, which remained at the ALS3 site. In addition, etomidate decreased the expression of mannoproteins on the surface of C. albicans. These results revealed that etomidate inhibited the growth of biofilms.


Assuntos
Candida/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Etomidato/farmacologia , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Etomidato/metabolismo , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...